Crack the Code Vertical Motion Under Gravity

In all questions, use the acceleration due to gravity as $9.8 \ ms^{-1}$ and assume that the object can be modelled as a particle.

	A	A stone is dropped from the top of a cliff. The stone takes 4 seconds to reach the sea at the bottom of the cliff. Find the height of the cliff.	В	A ball is dropped from a height of 44.1 metres above the ground. Find the time taken for the ball to reach the ground.
	С	An apple is projected vertically downward with a velocity of $12~{\rm ms}^{-1}$. The apple travels $11~{\rm metres}$ before hitting the ground. Find the velocity of the apple as it hits the ground.	D	A tennis ball is thrown vertically upward from the ground with a velocity of $15~\mathrm{ms}^{-1}$. Find the maximum height above ground that the ball reaches.
	E	A pebble is projected vertically upwards. It reaches its maximum height 2.5 seconds later. Find the initial velocity of the pebble.	F	A particle is projected vertically upwards with a velocity of $u~{\rm ms}^{-1}$. Three seconds later the particle is moving downwards with a velocity of $16~{\rm ms}^{-1}$. Find the value of u .
	G	A stone is projected upwards from a height of 7.2 metres. It reaches the ground 8 seconds later. Find the initial velocity of the stone.	Н	A ball is projected upwards from a height of $1.5~\rm m$ above the ground with an initial velocity of $18~\rm ms^{-1}$. Find the time taken for the ball to hit the ground.
	I	A ball is projected vertically upwards from a height 3 m above the ground, with a velocity of $20~\text{ms}^{-1}$. It reaches the ground 6 seconds later. Find the total distance travelled by the ball.	J	Particle A is dropped from a height $2h$ m. At the same time, particle B is projected upwards from height h with a velocity of $10\ ms^{-1}$. They both hit the ground at the same time. Find height h .
Round all answers to 1 decimal place. To get the three-digit code, add				

Round all answers to 1 decimal place. To get the three-digit code, add all your answers together then round to the nearest integer.