Fill in the Blanks Solving Hidden Quadratics

Hidden Quadratic	Substitution $y = \cdots$	Quadratic in terms of y	Factorise and Solve Quadratic	Solutions to Hidden Quadratic
$x^4 - 6x^2 + 8 = 0$	$y = x^2$	$y^2 - 6y + 8 = 0$	(y-4)(y-2) = 0 y = 4, y = 2	$x^{2} = 4, x^{2} = 2$ $x = \pm 2, x = \pm \sqrt{2}$
$a^6 - 28a^3 + 27 = 0$	$y = a^3$	$y^2 - 28y + 27 = 0$	(y-27)(y-1) = 0 y = 27, y = 1	$a^{3} = 27, a^{3} = 1$ a = 3, a = 1
$b + \sqrt{b} - 12 = 0$	$y = \sqrt{b}$	$y^2 + y - 12 = 0$	(y+4)(y-3) = 0 y = -4, y = 3	$\sqrt{b} = -4, \sqrt{b} = 3$ b = 9 only
$2^{2x} - 5 \times 2^x + 4 = 0$	$y = 2^x$	$y^2 - 5y + 4 = 0$	(y-4)(y-1) = 0 y = 4, y = 1	$2^{x} = 4, 2^{x} = 1$ x = 2, x = 0
$4w^4 - 13w^2 + 9 = 0$	$y = w^2$	$4y^2 - 13y + 9 = 0$	(4y-9)(y-1) = 0 $y = \frac{9}{4}, y = 1$	$w^{2} = \frac{9}{4}, w^{2} = 1$ $w = \pm \frac{3}{2}, w = \pm 1$
$9 \times 3^{2z} - 82 \times 3^z + 9 = 0$	$y = 3^z$	$9y^2 - 82y + 9 = 0$	(y-9)(9y-1) = 0 $y = 9, y = \frac{1}{9}$	$3^{z} = 9, 3^{z} = \frac{1}{9}$ z = 2, z = -2
$6t^{2/3} - 5t^{1/3} - 4 = 0$	$y = \sqrt[3]{t}$	$6y^2 - 5y - 4 = 0$	(3y-4)(2y+1) = 0 $y = \frac{4}{3}, y = -\frac{1}{2}$	$\sqrt[3]{t} = \frac{4}{3}, \sqrt[3]{t} = -\frac{1}{2}$ $t = \frac{64}{27}, t = -\frac{1}{8}$