Vector Proof – Equating Coefficients		
(a)	(b)	(c)
$\overrightarrow{OABC} \text{ is a quadrilateral, where } \overrightarrow{OC} = 3a,$ $\overrightarrow{OA} = a + 2b \text{ and } \overrightarrow{AB} = 2a - \frac{1}{2}b. \text{ The}$ point <i>D</i> is on <i>OB</i> and <i>AC</i> such that $OD : OB = \lambda: 1 \text{ and } AD : AC = \mu: 1.$ By finding two ways to express the vector $\overrightarrow{OD}, \text{ find the values of } \lambda \text{ and } \mu.$ $\overrightarrow{OD} = \lambda \overrightarrow{OB} = \lambda \left(3a + \frac{3}{2}b\right)$ $\overrightarrow{OD} = a + 2b + \mu(2a - 2b)$ $\overrightarrow{OD} = a + 2b + \mu(2a - 2b)$ $\overrightarrow{OD} = \frac{3}{2}\lambda = 1 + 2\mu$ $\overrightarrow{Coefficients of } b:$ $\frac{3}{2}\lambda = 2 - 2\mu$ $\lambda = \frac{2}{3}, \mu = \frac{1}{2}$	$OABC \text{ is a trapezium, where } \overrightarrow{OC} = 10a,$ $\overrightarrow{OA} = a - 4b \text{ and } \overrightarrow{AB} = 5a. M \text{ is the}$ midpoint of the line <i>BC</i> . The point <i>X</i> is on <i>OB</i> and <i>AM</i> such that $OX : OB = \lambda: 1 \text{ and } AX : AM = \mu: 1.$ Find the values of λ and μ and the vector $\overrightarrow{OX} \text{ in terms of } a \text{ and } b.$ $A = 4b = \lambda(6a - 4b)$ $\overrightarrow{OX} = \lambda \overrightarrow{OB} = \lambda(6a - 4b)$ $\overrightarrow{OX} = a - 4b + \mu(7a + 2b)$ Coefficients of $a:$ $6\lambda = 1 + 7\mu$ Coefficients of $b:$ $-4\lambda = -4 + 2\mu$ $\lambda = \frac{3}{4}, \mu = \frac{1}{2}, \overrightarrow{OX} = \frac{9}{2}a - 3b$	In the triangle OAB , $\overrightarrow{OB} = 5b$ and $\overrightarrow{OM} = 2a + 2b$, where M is the midpoint of OB . OC is the line OB produced and $\overrightarrow{OB} = \overrightarrow{BC}$. The point X is on the line AB such that $AX : AB = \lambda : 1$. Given that MXC is a straight line, find the value of λ and the vector \overrightarrow{MX} in terms of a and b . A A A A A Za + 2b A A A A A A Za + 2b A A A C A A A A A A A A