Vector Proof - Collinear Points

$O A C B$ is a parallelogram. $\overrightarrow{O A}=3 \boldsymbol{a}$ and $\overrightarrow{A C}=3 \boldsymbol{b} . Y$ is the midpoint of $O B$ and X divides the line $O C$ in the ratio $1: 2$. Show that the points A, X and Y are collinear.

(b)

$O A C B$ is a trapezium. $\overrightarrow{O A}=\boldsymbol{a}$ and $\overrightarrow{A B}=\boldsymbol{b} \cdot \overrightarrow{O C}=3 \overrightarrow{A B}$ and X divides the line $O B$ in the ratio $3: 1$. Show that the points A, X and C are collinear.

(d)

$\overrightarrow{O A}=4 \boldsymbol{a}-\boldsymbol{b}, \overrightarrow{A B}=\boldsymbol{a}+2 \boldsymbol{b}$ and $\overrightarrow{O C}=\boldsymbol{a}+\boldsymbol{b} \cdot \overrightarrow{A B}=\overrightarrow{B D}$.
The point X divides the line $A C$ in the ratio $6: 1$. Show that O, X and D are collinear.

