(a) Given that $(3+\sqrt{a})(4+\sqrt{a})=$
$17+b \sqrt{a}$ find the values of a and b.
(b) Given that $(5-\sqrt{x})^{2}=y-10 \sqrt{2}$ find the values of x and y.
(c) Given that $(c-\sqrt{d})^{2}=39-12 \sqrt{d}$, find the values of c and d.
(a) Find the nth term of the sequence $\begin{array}{llll}\sqrt{2} & \sqrt{8} & \sqrt{18} & \sqrt{32}\end{array}$
(b) Find the nth term of the sequence
$20 \quad 17+\sqrt{5} \quad 14+\sqrt{20}$
$11+\sqrt{45}$
(a) Show that $\sqrt{25 a^{2}}+\frac{2 a b \sqrt{75}}{\sqrt{3 b^{2}}}$ is always a multiple of 5 , given that a and b are integers.
(b) Show that $\sqrt{2}(c \sqrt{8}-d \sqrt{50})$ is always even when c and d are integers.
(a) Given that d is a prime number, rationalise the denominator of $\frac{5 \sqrt{d}}{2+\sqrt{d}}$
(b) Rationalise the denominator of $\frac{2 e+\sqrt{f}}{e-\sqrt{f}}$ where e is an integer and f is a prime number.

Solve, giving your answer in its simplest form:
(a) $3 \sqrt{3}=\sqrt{3} x+2$
(b) $3 x-\sqrt{5}=\sqrt{5} x+1$
(c) $x^{2}-2 \sqrt{3} x+3=0$
(d) $2 x^{2}+\sqrt{7} x-7=0$
(e) $3 x^{2}+5 \sqrt{5} x=10$
(a) Given that $(3+\sqrt{a})(4+\sqrt{a})=$
$17+b \sqrt{a}$ find the values of a and b.
(b) Given that $(5-\sqrt{x})^{2}=y-10 \sqrt{2}$ find the values of x and y.
(c) Given that $(c-\sqrt{d})^{2}=39-12 \sqrt{d}$, find the values of c and d.
(a) Find the nth term of the sequence $\begin{array}{llll}\sqrt{2} & \sqrt{8} & \sqrt{18} & \sqrt{32}\end{array}$
(b) Find the nth term of the sequence
$20 \quad 17+\sqrt{5} \quad 14+\sqrt{20}$ $11+\sqrt{45}$
(a) Show that $\sqrt{25 a^{2}}+\frac{2 a b \sqrt{75}}{\sqrt{3 b^{2}}}$ is always a multiple of 5, given that a and b are integers.
(b) Show that $\sqrt{2}(c \sqrt{8}-d \sqrt{50})$ is always even when c and d are integers.
(a) Given that d is a prime number, rationalise the denominator of $\frac{5 \sqrt{d}}{2+\sqrt{d}}$ (b) Rationalise the denominator of $\frac{2 e+\sqrt{f}}{e-\sqrt{f}}$ where e is an integer and f is a prime number.

Solve, giving your answer in its simplest form:
(a) $3 \sqrt{3}=\sqrt{3} x+2$
(b) $3 x-\sqrt{5}=\sqrt{5} x+1$
(c) $x^{2}-2 \sqrt{3} x+3=0$
(d) $2 x^{2}+\sqrt{7} x-7=0$
(e) $3 x^{2}+5 \sqrt{5} x=10$

