Solving Quadratic Inequalities in Context

(a)

A rectangle has sides of length $x\ cm$ and width $(x-3)\ cm$, as shown. If the area of the rectangle is greater than $10\ cm^2$:

$$x(x-3) > 10$$

$$x^{2} - 3x > 10$$

$$x^{2} - 3x - 10 > 0$$

(ii) Find the range of possible values of x.

$$(x-5)(x+2) > 0$$

 $x > 5, x < -2$
but $x > 0, so x > 5$

(b)

A cuboid has dimensions of 3 cm, (x-1) cm and (x-3) cm, as shown. If the volume of the cuboid is greater than $45 cm^3$:

$$3(x-1)(x-3) > 45$$
$$x^2 - 4x + 3 > 15$$
$$x^2 - 4x - 12 > 0$$

(ii) Find the range of possible values of x.

$$(x-6)(x+2) > 0$$

 $x > 6, x < -2$
but $x > 0$, so $x > 6$

(c)

Given that the area of the rectangle is greater than the area of the triangle, find the range of possible values of x.

(d)

A rectangular lawn has a length of (2x+1) m and a width of (x+4) m, as shown. Given that the area of the lawn is less than $49 m^2$, find the range of possible values of x.

$$(2x+1)(x+4) < 49$$

$$2x^{2} + 9x - 45 < 0$$

$$(2x+15)(x-3) < 0$$

$$-7.5 < x < 3$$

$$but x > -\frac{1}{2}, so -\frac{1}{2} < x < 3$$