Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ when:
(a) $y=x^{2}+4 x-3$
(b) $y=5 x^{3}+x^{2}+8 x-3$
(c) $y=x^{4}-7 x^{2}$
(d) $y=x^{2}-\frac{2}{x}$

Find the coordinates of the stationary points on each of these curves. By differentiating for a second time, establish whether these points are maximums or minimums.
(a) $y=4 x^{2}-8 x$
(b) $y=5+2 x-x^{2}$
(c) $y=(8+x)(2-x)$
(d) $y=x^{4}-8 x^{2}$
(e) $y=2 x^{3}-3 x^{2}-12 x+5$
(f) $y=x+\frac{1}{x}$
(a) Find the coordinates of the stationary point on the curve
$y=x^{3}+3 x^{2}+3 x+1$.
(b) By considering the gradient either side of the stationary point, show that the stationary point is a point of inflection.
(a) Find the coordinates of the stationary point on the curve $y=(2-x)^{3}$.
(b) By considering the gradient either side of the stationary point, show that the stationary point is a point of inflection.

Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ when:
(a) $y=x^{2}+4 x-3$
(b) $y=5 x^{3}+x^{2}+8 x-3$
(c) $y=x^{4}-7 x^{2}$
(d) $y=x^{2}-\frac{2}{x}$

Find the coordinates of the stationary points on each of these curves. By differentiating for a second time, establish whether these points are maximums or minimums.
(a) $y=4 x^{2}-8 x$
(b) $y=5+2 x-x^{2}$
(c) $y=(8+x)(2-x)$
(d) $y=x^{4}-8 x^{2}$
(e) $y=2 x^{3}-3 x^{2}-12 x+5$
(f) $y=x+\frac{1}{x}$
(a) Find the coordinates of the stationary point on the curve
$y=x^{3}+3 x^{2}+3 x+1$.
(b) By considering the gradient either side of the stationary point, show that the stationary point is a point of inflection.
(a) Find the coordinates of the stationary point on the curve $y=(2-x)^{3}$.
(b) By considering the gradient either side of the stationary point, show that the stationary point is a point of inflection.

