Direct Proportion						
Question	General Equation	Find k		New Equation		Find Value using Equation
A is directly proportional to B^2 , when $A = 45$, $B = 3$. Find A when $B = 7$	$A = k \times B^2$	$45 = k \times 3^2$ so $k = 5$		$A = 5B^2$		$A = 5 \times 7^2$ $A = 245$
(a) y is directly proportional to x^2 , and $y = 270$ when $x = 3$. Find y when $x = 5$	$y = k \times x^2$	$270 = k \times 3^2$ so $k = 30$		$y = 30x^2$		$y = 30 \times 5^2$ $y = 750$
(b) N is directly proportional to L^3 , when $N=1280$, $L=4$. Find N when $L=3$	$N = k \times L^3$	$1280 = k \times 4^3$ so $k = 20$		$N=20L^3$		$N = 20 \times 3^3$ $N = 540$
(c) A is directly proportional to \sqrt{B} and when $A=90$, $B=9$. Find A when $B=25$	$A = k \times \sqrt{B}$	$90 = k \times \sqrt{9}$ so $k = 30$		$A = 30\sqrt{B}$		$A = 30 \times \sqrt{25}$ $y = 150$
(d) A is directly proportional to B^2 and when $A=8$, $B=4$. Find A when $B=0.5$	(e) h is directly proportional to \sqrt{w} and $h = 15$ when $w = 4$. Find h when $w = 64$		(f) A is directly proportional to V^3 and when $A=400$, $V=2$. Find V when $A=6250$		(g) y is directly proportional to $\sqrt[3]{x}$. When $x = 8$, $y = 64$. Find x when $y = 128$	
$A = k \times B^{2}$ $8 = k \times 4^{2}$ $k = 0.5$ $A = 0.5B^{2}$	$h = k \times \sqrt{w}$ $15 = k \times \sqrt{4}$ $k = 7.5$ $h = 7.5\sqrt{w}$		$A = k \times V^{3}$ $400 = k \times 2^{3}$ $k = 50$ $A = 50V^{3}$		$y = k \times \sqrt[3]{x}$ $64 = k \times \sqrt[3]{8}$ $k = 32$ $y = 32\sqrt[3]{x}$	
$A = 0.5 \times 0.5^2$ $A = 0.125$	$h = 7.5 \times \sqrt{64}$ $h = 60$		$6250 = 50 \times V^3$ $V = 5$		$128 = 32 \times \sqrt[3]{x}$ $x = 64$	