Vector Proof - Parallel Lines

(a)

$O A C B$ is a parallelogram. $\overrightarrow{O A}=\boldsymbol{a}$ and $\overrightarrow{O B}=\boldsymbol{b} . X$ is the midpoint of $A C$ and Y is the midpoint of $B C$. Show that $X Y$ and $A B$ are parallel.

$$
\begin{gathered}
\overrightarrow{A B}=-\boldsymbol{a}+\boldsymbol{b} \\
\overrightarrow{X Y}=-\frac{1}{2} \boldsymbol{a}+\frac{1}{2} \boldsymbol{b} \\
\overrightarrow{A B}=2 \overrightarrow{X Y}
\end{gathered}
$$

Since $\overrightarrow{A B}$ is a multiple of $\overrightarrow{X Y}, X Y$ is parallel to $A B$.

(c)

In the triangle $O A B, \overrightarrow{O B}=\boldsymbol{b}$ and $\overrightarrow{O A}=3 \boldsymbol{a}$. The point C divides the line $O A$ in the ratio $2: 1$ and the point D divides the line $A B$ in the ratio $1: 2$. Show that $C D$ is parallel to $O B$.

$$
\begin{aligned}
& \overrightarrow{O B}=\boldsymbol{b} \\
& \overrightarrow{C D}=\boldsymbol{a}+\frac{1}{3}(-3 \boldsymbol{a}+\boldsymbol{b})=\frac{1}{3} \boldsymbol{b} \\
& \overrightarrow{O B}=3 \overrightarrow{C D}
\end{aligned}
$$

Since $\overrightarrow{O B}$ is a multiple of $\overrightarrow{C D}, C D$ is parallel to $O B$.

(b)

$O A C B$ is a trapezium. $\overrightarrow{O A}=2 \boldsymbol{a}$ and $\overrightarrow{A B}=2 \boldsymbol{b} \cdot \overrightarrow{O C}=2 \overrightarrow{A B}$ and D is the midpoint of $O B$. Show that $A D$ is parallel to $B C$.

$$
\begin{gathered}
\overrightarrow{B C}=-2 \boldsymbol{a}+2 \boldsymbol{b} \\
\overrightarrow{A D}=-\boldsymbol{a}+\boldsymbol{b} \\
\overrightarrow{B C}=2 \overrightarrow{A D}
\end{gathered}
$$

Since $\overrightarrow{B C}$ is a multiple of $\overrightarrow{A D}, A D$ is parallel to $B C$.

(d)

In the triangle $O A B, \overrightarrow{O B}=\boldsymbol{b}$ and $\overrightarrow{O A}=\boldsymbol{a}$. Point B is the midpoint of the line $O C$ and X is the midpoint of $A B$. The point Y divides the line $O A$ in the ratio $3: 1$. Show that $Y X$ is parallel to $A C$.

$$
\begin{gathered}
\overrightarrow{A C}=-\boldsymbol{a}+2 \boldsymbol{b} \\
\overrightarrow{Y X}=\frac{1}{4} \boldsymbol{a}-\frac{1}{2} \boldsymbol{a}+\frac{1}{2} \boldsymbol{b}=-\frac{1}{4} \boldsymbol{a}+\frac{1}{2} \boldsymbol{b} \\
\overrightarrow{A C}=4 \overrightarrow{Y X}
\end{gathered}
$$

Since $\overrightarrow{A C}$ is a multiple of $\overrightarrow{Y X}, X Y$ is parallel to $A C$.

